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P R E F A C E

B A C K G R O U N D
This text is an abbreviated version of standard thermodynamics, fluid mechanics, 
and heat transfer texts, covering topics that engineering students are most likely 
to need in their professional lives. The thermodynamics portion of this text is 
based on the text Thermodynamics: An Engineering Approach by Y. A. Çengel, 
M. A. Boles, and Mehmet Kanoğlu, the fluid mechanics portion is based on Fluid 
Mechanics: Fundamentals and Applications by Y. A. Çengel and J. M. Cimbala, 
and the heat transfer portion is based on Heat and Mass Transfer: Fundamentals 
and Applications by Y. A. Çengel and A. J. Ghajar, all published by McGraw-
Hill. Most chapters are practically independent of each other and can be covered 
in any order. The text is well-suited for curriculums that have a common introduc-
tory course or a two-course sequence on thermal-fluid sciences.

It is recognized that all topics of thermodynamics, fluid mechanics, and heat 
transfer cannot be covered adequately in a typical three-semester-hour course, 
so sacrifices must be made from the depth if not from the breadth of coverage. 
Selecting the right topics and finding the proper combination of depth and breadth 
are no small challenge for instructors, and this text is intended to provide the 
basis for that selection. Students in a combined thermal-fluids course can gain 
a basic understanding of energy and energy interactions, various mechanisms of 
heat transfer, and fundamentals of fluid flow. Such a course can also instill in 
students the confidence and the background to do further reading of their own and 
to be able to communicate effectively with specialists in thermal-fluid sciences.

O B J E C T I V E S
This book is intended for use as a textbook in a first course in thermal-fluid sci-
ences for undergraduate engineering students in their sophomore, junior, or senior 
year, and as a reference book for practicing engineers. Students are assumed to 
have an adequate background in calculus, physics, and engineering mechanics. 
The objectives of this text are

∙	 To cover the basic principles of thermodynamics, fluid mechanics, and 
heat transfer.

∙	 To present numerous and diverse real-world engineering examples to give 
students a feel for how thermal-fluid sciences are applied in  
engineering practice.

∙	 To develop an intuitive understanding of thermal-fluid sciences by  
emphasizing the physics and physical arguments.

The text contains sufficient material to give instructors flexibility and to accom-
modate their preferences on the right blend of thermodynamics, fluid mechanics, 
and heat transfer for their students. By careful selection of topics, an instructor can 
spend one-third, one-half, or two-thirds of the course on thermodynamics and the 
rest on selected topics of fluid mechanics and heat transfer.

P H I L O S O P H Y  A N D  G O A L
The philosophy that contributed to the warm reception of the first edition of this 
book has remained unchanged. Our goal is to offer an engineering textbook that

∙	 Communicates directly to the minds of tomorrow’s engineers in a simple 
yet precise manner.
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∙	 Leads students toward a clear understanding and firm grasp of the  
basic principles of thermal-fluid sciences.

∙	 Encourages creative thinking and development of a deeper understanding 
and intuitive feel for thermal-fluid sciences.

∙	 Is read by students with interest and enthusiasm rather than being used as 
an aid to solve problems.

Special effort has been made to appeal to readers’ natural curiosity and to help 
students explore the exciting subject area of thermal-fluid sciences. The enthu-
siastic response we received from the users of the previous editions—from small 
colleges to large universities all over the world—indicates that our objectives 
have largely been achieved. It is our philosophy that the best way to learn is by 
practice. Therefore, special effort is made throughout the book to reinforce mate-
rial that was presented earlier.

Yesterday’s engineers spent a major portion of their time substituting values 
into formulas and obtaining numerical results. Today, formula manipulations and 
number crunching are being left to computers. Tomorrow’s engineers will need to 
have a clear understanding and a firm grasp of the basic principles so that he or 
she can understand even the most complex problems, formulate them, and inter-
pret the results. A conscious effort is made to emphasize these basic principles 
while also providing students with a look at how modern tools are used in engi-
neering practice.

N E W  I N  T H I S  E D I T I O N
All the popular features of the previous editions have been retained while new 
ones have been added. The main body of the text remains largely unchanged. 
Updates and changes for clarity and readability have been made throughout the 
text.

Recent new definitions of kilogram, mole, ampere, and kelvin in the 26th Gen-
eral Conference on Weights and Measures in France are provided in Chaps. 1 
and 2. A new subsection, “Equation Solvers,” is also added to Chap. 1.

In Chap. 14, we now highlight the explicit Churchill equation as an alternative 
to the implicit Colebrook equation. A number of exciting new pictures have been 
added to fluid mechanics chapters.

In Chap. 18, the graphical representation of the one-dimensional transient heat 
conduction solutions (Heisler charts) have been eliminated, and the emphasis has 
been placed on the solutions with more accurate approximate or exact analytical 
expressions. 

A large number of the end-of-chapter problems in the text have been modi-
fied, and many problems were replaced by new ones. Also, several of the solved 
example problems have been replaced.

Video Resources—2D/3D animation videos have been added to the eBook to 
help clarify challenging concepts such as thermodynamic cycles. In addition to 
these conceptual video resources, worked example problem videos are included 
in the eBook to help students apply their conceptual understanding to problem 
solving.

L E A R N I N G  T O O L S
EMPHASIS ON PHYSICS
A distinctive feature of this book is its emphasis on the physical aspects of sub-
ject matter in addition to mathematical representations and manipulations. The 
authors believe that the emphasis in undergraduate education should remain on 
developing a sense of underlying physical mechanisms and a mastery of solving 
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practical problems that an engineer is likely to face in the real world. Developing 
an intuitive understanding should also make the course a more motivating and 
worthwhile experience for students.

EFFECTIVE USE OF ASSOCIATION
An observant mind should have no difficulty understanding engineering sciences. 
After all, the principles of engineering sciences are based on our everyday experi-
ences and experimental observations. A more physical, intuitive approach is used 
throughout this text. Frequently, parallels are drawn between the subject matter 
and students’ everyday experiences so that they can relate the subject matter to 
what they already know.

SELF-INSTRUCTING
The material in the text is introduced at a level that an average student can follow 
comfortably. It speaks to students, not over them. In fact, it is self-instructive. 
Noting that the principles of science are based on experimental observations, most 
of the derivations in this text are largely based on physical arguments, and thus 
they are easy to follow and understand.

EXTENSIVE USE OF ARTWORK
Figures are important learning tools that help students to “get the picture.” The 
text makes effective use of graphics, and it contains a great number of figures and 
illustrations. Figures attract attention and stimulate curiosity and interest. Some of 
the figures in this text are intended to serve as a means of emphasizing some key 
concepts that would otherwise go unnoticed; some serve as page summaries.

CHAPTER OPENERS AND SUMMARIES
Each chapter begins with an overview of the material to be covered and chapter 
objectives. A summary is included at the end of each chapter for a quick review of 
basic concepts and important relations.

NUMEROUS WORKED-OUT EXAMPLES
Each chapter contains several worked-out examples that clarify the material and 
illustrate the use of the basic principles. An intuitive and systematic approach 
is used in the solution of the example problems, with particular attention to the 
proper use of units.

A WEALTH OF REAL-WORLD END-OF-CHAPTER PROBLEMS
The end-of-chapter problems are grouped under specific topics in the order they 
are covered to make problem selection easier for both instructors and students. 
Within each group of problems are Concept Questions, indicated by “C” to check 
the students’ level of understanding of basic concepts. The problems under Review 
Problems are more comprehensive in nature and are not directly tied to any spe-
cific section of a chapter—in some cases they require review of material learned 
in previous chapters. The problems under the Design and Essay Problems title 
are intended to encourage students to make engineering judgments, to conduct 
independent exploration of topics of interest, and to communicate their findings in 
a professional manner. Several economics- and safety-related problems are incor-
porated throughout to enhance cost and safety awareness among engineering stu-
dents. Answers to selected problems are listed immediately following the problem 
for convenience to students.

A SYSTEMATIC SOLUTION PROCEDURE
A well-structured approach is used in problem solving while maintaining an infor-
mal conversational style. The problem is first stated and the objectives are identi-
fied, and the assumptions made are stated together with their justifications. The 
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properties needed to solve the problem are listed separately. Numerical values are 
used together with their units to emphasize that numbers without units are mean-
ingless, and unit manipulations are as important as manipulating the numerical 
values with a calculator. The significance of the findings is discussed following 
the solutions. This approach is also used consistently in the solutions presented in 
the Instructor’s Solutions Manual.

RELAXED SIGN CONVENTION
The use of a formal sign convention for heat and work is abandoned as it often 
becomes counterproductive. A physically meaningful and engaging approach is 
adopted for interactions instead of a mechanical approach. Subscripts “in” and 
“out,” rather than the plus and minus signs, are used to indicate the directions of 
interactions.

A CHOICE OF SI ALONE OR SI / ENGLISH UNITS
In recognition of the fact that English units are still widely used in some indus-
tries, both SI and English units are used in this text, with an emphasis on SI. 
The material in this text can be covered using combined SI/English units or SI 
units alone, depending on the preference of the instructor. The property tables and 
charts in the appendices are presented in both units, except the ones that involve 
dimensionless quantities. Problems, tables, and charts in English units are desig-
nated by “E” after the number for easy recognition, and they can be ignored easily 
by the SI users.

CONVERSION FACTORS
Frequently used conversion factors and physical constants are listed after the 
index for easy reference.

REMOTE PROCTORING & BROWSER-LOCKING CAPABILITIES
New remote proctoring and browser-locking capabilities, hosted by Proctorio 
within Connect, provide control of the assessment environment by enabling secu-
rity options and verifying the identity of the student. 

Seamlessly integrated within Connect, these services allow instructors to con-
trol students’ assessment experience by restricting browser activity, recording stu-
dents’ activity, and verifying students are doing their own work.

Instant and detailed reporting gives instructors an at-a-glance view of poten-
tial academic integrity concerns, thereby avoiding personal bias and supporting 
evidence-based claims.

WRITING ASSIGNMENT 
Available within McGraw-Hill Connect®, the Writing Assignment tool delivers 
a learning experience to help students improve their written communication skills 
and conceptual understanding. As an instructor you can assign, monitor, grade, 
and provide feedback on writing more efficiently and effectively.

I N S T R U C T O R  R E S O U R C E S
A number of supplements are available to instructors through Connect. This includes 
text images in PowerPoint format, Solutions Manual, and Lecture PowerPoints.
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I N T R O D U C T I O N  A N D 
O V E R V I E W

Many engineering systems involve the transfer, transport, and conversion 
of energy, and the sciences that deal with these subjects are broadly 
referred to as thermal‑fluid sciences. Thermal‑fluid sciences are usu-

ally studied under the subcategories of thermodynamics, heat transfer, and fluid 

mechanics. We start this chapter with an overview of these sciences, and give 
some historical background. Then we review the unit systems that will be used, 
and discuss dimensional homogeneity. We then present an intuitive systematic 
problem-solving technique that can be used as a model in solving engineering 
problems, followed by a discussion of the proper place of software packages in 
engineering. Finally, we discuss accuracy and significant digits in engineering 
measurements and calculations.

OBJECTIVES
Objectives of this chapter are to:
	■	 Be acquainted with the 

engineering sciences 
thermodynamics, heat transfer, 
and fluid mechanics, and 
understand the basic concepts 
of thermal-fluid sciences.

	■	 Be comfortable with the metric 
SI and English units commonly 
used in engineering.

	■	 Develop an intuitive systematic 
problem-solving technique.

	■	 Learn the proper use of 
software packages in 
engineering.

	■	 Develop an understanding of 
accuracy and significant digits 
in calculations.

CHAPTER

1
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1–1 ■ �INTRODUCTION TO THERMAL‑FLUID 
SCIENCES

The word thermal stems from the Greek word therme, which means heat. 
Therefore, thermal sciences can loosely be defined as the sciences that deal with 
heat. The recognition of different forms of energy and its transformations has 
forced this definition to be broadened. Today, the physical sciences that deal 
with energy and the transfer, transport, and conversion of energy are usually 
referred to as thermal‑fluid sciences or just thermal sciences. Traditionally, 
the thermal‑fluid sciences are studied under the subcategories of thermodynam-
ics, heat transfer, and fluid mechanics. In this book, we present the basic prin-
ciples of these sciences, and apply them to situations that engineers are likely to 
encounter in their practice.

The design and analysis of most thermal systems such as power plants, auto-
motive engines, and refrigerators involve all categories of thermal‑fluid sciences 
as well as other sciences (Fig. 1–1). For example, designing the radiator of a car 
involves the determination of the amount of energy transfer from a knowledge 
of the properties of the coolant using thermodynamics, the determination of the 
size and shape of the inner tubes and the outer fins using heat transfer, and the 
determination of the size and type of the water pump using fluid mechanics. 
Of course, the determination of the materials and the thickness of the tubes 
requires the use of material science as well as strength of materials. The reason 
for studying different sciences separately is simply to facilitate learning without 
being overwhelmed. Once the basic principles  are mastered, they can then be 
synthesized by solving comprehensive  real‑world practical problems. But first 
we present an overview of thermal‑fluid sciences.

Application Areas of Thermal‑Fluid Sciences
All activities in nature involve some interaction between energy and matter; 
thus, it is hard to imagine an area that does not relate to thermal‑fluid sci-
ences in some manner. Therefore, developing a good understanding of basic 
principles of thermal‑fluid sciences has long been an essential part of engi-
neering education.

Thermal‑fluid sciences are commonly encountered in many engineering sys-
tems and other aspects of life, and one does not need to go very far to see some 
application areas of them. In fact, one does not need to go anywhere. The heart is 
constantly pumping blood to all parts of the human body, various energy conver-
sions occur in trillions of body cells, and the body heat generated is constantly 
rejected to the environment. Human comfort is closely tied to the rate of this 
metabolic heat rejection. We try to control this heat transfer rate by adjusting our 
clothing to the environmental conditions. Also, any defect in the heart and the 
circulatory system is a major cause for alarm.

Other applications of thermal‑fluid sciences are right where one lives. An 
ordinary house is, in some respects, an exhibition hall filled with wonders of 
thermal‑fluid sciences. Many ordinary household utensils and appliances are 
designed, in whole or in part, by using the principles of thermal‑fluid sciences. 
Some examples include the electric or gas range, heating and air‑conditioning 
systems, refrigerator, humidifier, pressure cooker, water heater, shower, iron, 
plumbing and sprinkling systems, and  even the computer, TV, and DVD 
player. On a larger scale, thermal‑fluid sciences play a major part in the design 
and analysis of automotive engines, rockets, jet engines, and conventional or 
nuclear power plants, solar collectors, the transportation of water, crude oil, 
and natural gas, the water distribution systems in cities, and the design of vehi-
cles from ordinary cars to airplanes (Fig. 1–2). The energy‑efficient home that 
you may be living in, for example, is designed on the basis of minimizing heat 

Solar
collectors

Hot
water
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exchanger Pump

Shower
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Hot-water tank

FIGURE 1–1
The design of many engineering 
systems, such as this solar hot-water 
system, involves thermal-fluid sciences.
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loss in winter and heat gain in summer. The size, location, and the power input 
of the fan of your computer is also selected after a thermodynamic, heat trans-
fer, and fluid flow analysis of the computer.

1–2 ■ THERMODYNAMICS
Thermodynamics can be defined as the science of energy. Although everybody 
has a feeling of what energy is, it is difficult to give a precise definition for it. 
Energy can be viewed as the ability to cause changes.

The name thermodynamics stems from the Greek words therme (heat) and 
dynamis (power), which is most descriptive of the early efforts to convert heat 
into power. Today the same name is broadly interpreted to include all aspects 
of energy and energy transformations including power generation, refrigeration, 
and relationships among the properties of matter.

One of the most fundamental laws of nature is the conservation of energy  
principle. It simply states that during an interaction, energy can change from 
one form to another but the total amount of energy remains constant. That is, 
energy cannot be created or destroyed. A rock falling off a cliff, for example, 
picks up speed as a result of its potential energy being converted to kinetic 
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FIGURE 1–2
Some application areas of thermal-fluid sciences.
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energy (Fig. 1–3). The conservation of energy principle also forms the backbone 
of the diet industry: A person who has a greater energy input (food) than energy 
output (exercise) will gain weight (store energy in the form of fat), and a per-
son who has a smaller energy input than output will lose weight (Fig. 1–4). The 
change in the energy content of a body or any other system is equal to the differ-
ence between the energy input and the energy output, and the energy balance is 
expressed as Ein − Eout = ΔE.

The first law of thermodynamics is simply an expression of the conservation 
of energy principle, and it asserts that energy is a thermodynamic property. The 
second law of thermodynamics asserts that energy has quality as well as quan‑
tity, and actual processes occur in the direction of decreasing quality of energy. 
For example, a cup of hot coffee left on a table eventually cools, but a cup of 
cool coffee in the same room never gets hot by itself. The high-temperature 
energy of the coffee is degraded (transformed into a less useful form at a lower 
temperature) once it is transferred to the surrounding air.

Although the principles of thermodynamics have been in existence since the 
creation of the universe, thermodynamics did not emerge as a science until the 
construction of the first successful atmospheric steam engines in England by 
Thomas Savery in 1697 and Thomas Newcomen in 1712. These engines were 
very slow and inefficient, but they opened the way for the development of a new 
science.

The first and second laws of thermodynamics emerged simultaneously in the 
1850s, primarily out of the works of William Rankine, Rudolph Clausius, and 
Lord Kelvin (formerly William Thomson). The term thermodynamics was first 
used in a publication by Lord Kelvin in 1849. The first thermodynamics text-
book was written in 1859 by William Rankine, a professor at the University of 
Glasgow.

It is well known that a substance consists of a large number of particles called 
molecules. The properties of the substance naturally depend on the behavior of 
these particles. For example, the pressure of a gas in a container is the result 
of momentum transfer between the molecules and the walls of the container. 
However, one does not need to know the behavior of the gas particles to deter-
mine the pressure in the container. It would be sufficient to attach a pressure 
gage to the container. This macroscopic approach to the study of thermodynam-
ics that does not require a knowledge of the behavior of individual particles is 
called classical thermodynamics. It provides a direct and easy way to solve 
engineering problems. A more elaborate approach, based on the average behav-
ior of large groups of individual particles, is called statistical thermodynamics. 
This microscopic approach is rather involved and is used in this text only in a 
supporting role.

1–3 ■ �HEAT TRANSFER
We all know from experience that a cold canned drink left in a room warms 
up and a warm canned drink left in a refrigerator cools down. This is accom-
plished by the transfer of energy from the warm medium to the cold one. The 
energy transfer is always from the higher temperature medium to the lower tem-
perature one, and the energy transfer stops when the two media reach the same 
temperature.

Energy exists in various forms. In heat transfer, we are primarily interested 
in heat, which is the form of energy that can be transferred from one system 
to another as a result of temperature difference. The science that deals with the 
determination of the rates of such energy transfers is heat transfer.

You may be wondering why we need to undertake a detailed study on heat 
transfer. After all, we can determine the amount of heat transfer for any system 

FIGURE 1–3
Energy cannot be created or 
destroyed; it can only change forms 
(the first law).

Potential
energy

Kinetic
energyPE = 7 units

KE = 3 units

PE = 10 units
KE = 0

FIGURE 1–4
Conservation of energy principle for 
the human body.

Energy out

(4 units)

Energy in

(5 units)

Energy storage
(1 unit)

Final PDF to printer



5
CHAPTER 1

cen1697x_ch01_001-018  5� 06/17/20  12:43 PM

undergoing any process using a thermodynamic analysis alone. The reason is 
that thermodynamics is concerned with the amount of heat transfer as a system 
undergoes a process from one equilibrium state to another, and it gives no indi-
cation about how long the process will take. A thermodynamic analysis simply 
tells us how much heat must be transferred to realize a specified change of state 
to satisfy the conservation of energy principle.

In practice we are more concerned about the rate of heat transfer (heat transfer 
per unit time) than we are with the amount of it. For example, we can determine 
the amount of heat transferred from a thermos bottle as the hot coffee inside 
cools from ​90° C​ to ​80° C​ by a thermodynamic analysis alone. But a typical user 
or designer of a thermos bottle is primarily interested in how long it will be 
before the hot coffee inside cools to ​80° C,​ and a thermodynamic analysis cannot 
answer this question. Determining the rates of heat transfer to or from a system 
and thus the times of heating or cooling, as well as the variation of the tempera-
ture, is the subject of heat transfer (Fig. 1–5).

Thermodynamics deals with equilibrium states and changes from one equilib-
rium state to another. Heat transfer, on the other hand, deals with systems that lack 
thermal equilibrium, and thus it is a nonequilibrium phenomenon. Therefore, the 
study of heat transfer cannot be based on the principles of thermodynamics alone. 
However, the laws of thermodynamics lay the framework for the science of heat 
transfer. The first law requires that the rate of energy transfer into a system be 
equal to the rate of increase of the energy of that system. The second law requires 
that heat be transferred in the direction of decreasing temperature (Fig. 1–6). This 
is like saying that a car parked on an inclined road must go downhill in the direc-
tion of decreasing elevation when its brakes are released. It is also analogous to the 
electric current flowing in the direction of decreasing voltage or the fluid flowing 
in the direction of decreasing total pressure.

The basic requirement for heat transfer is the presence of a temperature differ‑
ence. There can be no net heat transfer between two bodies that are at the same 
temperature. The temperature difference is the driving force for heat transfer, 
just as the voltage difference is the driving force for electric current flow and 
pressure difference is the driving force for fluid flow. The rate of heat transfer 
in a certain direction depends on the magnitude of the temperature gradient (the 
temperature difference per unit length or the rate of change of temperature) in 
that direction. The larger the temperature gradient, the higher the rate of heat 
transfer.

1–4 ■ FLUID MECHANICS
Mechanics is the oldest physical science that deals with both stationary and 
moving bodies under the influence of forces. The branch of mechanics that deals 
with bodies at rest is called statics, while the branch that deals with bodies in 
motion under the action of forces is called dynamics. The subcategory fluid 
mechanics is defined as the science that deals with the behavior of fluids at rest 
(  fluid statics) or in motion (  fluid dynamics), and the interaction of fluids with 
solids or other fluids at the boundaries. Fluid mechanics is also referred to as 
fluid dynamics by considering fluids at rest as a special case of motion with 
zero velocity (Fig. 1–7).

Fluid mechanics itself is also divided into several categories. The study 
of the motion of fluids that can be approximated as incompressible (such as 
liquids, especially water, and gases at low speeds) is usually referred to as 
hydrodynamics. A subcategory of hydrodynamics is hydraulics, which deals 
with liquid flows in pipes and open channels. Gas dynamics deals with the flow 
of fluids that undergo significant density changes, such as the flow of gases 
through nozzles at high speeds. The category aerodynamics deals with the flow 

FIGURE 1–5
We are normally interested in how 
long it takes for the hot coffee in a 
thermos bottle to cool to a certain 

temperature, which cannot be 
determined from a thermodynamic 

analysis alone.
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FIGURE 1–8
Deformation of a rubber block placed 
between two parallel plates under the 
influence of a shear force. The shear 
stress shown is that on the rubber—an 
equal but opposite shear stress acts on 
the upper plate.
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FIGURE 1–10
Unlike a liquid, a gas does not form a 
free surface, and it expands to fill the 
entire available space.

FIGURE 1–9
The normal stress and shear stress at 
the surface of a fluid element. For 
fluids at rest, the shear stress is zero 
and pressure is the only normal stress.
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of gases (especially air) over bodies such as aircraft, rockets, and automobiles 
at high or low speeds. Some other specialized categories such as meteorology, 
oceanography, and hydrology deal with naturally occurring flows.

You will recall from physics that a substance exists in three primary phases: 
solid, liquid, or gas. (At very high temperatures, it also exists as plasma.) A sub-
stance in the liquid or gas phase is referred to as a fluid. Distinction between a 
solid and a fluid is made on the basis of the substance’s ability to resist an applied 
shear (or tangential) stress that tends to change its shape. A solid can resist an 
applied shear stress by deforming, whereas a fluid deforms continuously under the 
influence of a shear stress, no matter how small. In solids, stress is proportional 
to strain, but in fluids, stress is proportional to strain rate. When a constant shear 
force is applied, a solid eventually stops deforming at some fixed strain angle, 
whereas a fluid never stops deforming and approaches a constant rate of strain.

Consider a rectangular rubber block tightly placed between two plates. As the 
upper plate is pulled with a force F while the lower plate is held fixed, the rub-
ber block deforms, as shown in Fig. 1–8. The angle of deformation α (called 
the shear strain or angular displacement) increases in proportion to the applied 
force F. Assuming there is no slip between the rubber and the plates, the upper 
surface of the rubber is displaced by an amount equal to the displacement of 
the upper plate while the lower surface remains stationary. In equilibrium, the 
net force acting on the upper plate in the horizontal direction must be zero, and 
thus a force equal and opposite to F must be acting on the plate. This opposing 
force that develops at the plate–rubber interface due to friction is expressed as 
F = τA, where τ is the shear stress and A is the contact area between the upper 
plate and the rubber. When the force is removed, the rubber returns to its origi-
nal position. This phenomenon would also be observed with other solids such as 
a steel block provided that the applied force does not exceed the elastic range. If 
this experiment were repeated with a fluid (with two large parallel plates placed 
in a large body of water, for example), the fluid layer in contact with the upper 
plate would move with the plate continuously at the velocity of the plate no mat-
ter how small the force F. The fluid velocity would decrease with depth because 
of friction between fluid layers, reaching zero at the lower plate. 

You will recall from statics that stress is defined as force per unit area and 
is determined by dividing the force by the area upon which it acts. The normal 
component of a force acting on a surface per unit area is called the normal 
stress, and the tangential component of a force acting on a surface per unit area 
is called shear stress (Fig. 1–9). In a fluid at rest, the normal stress is called 
pressure. A fluid at rest is at a state of zero shear stress. When the walls are 
removed or a liquid container is tilted, a shear develops as the liquid moves to 
reestablish a horizontal free surface. 

In a liquid, groups of molecules can move relative to each other, but the volume 
remains relatively constant because of the strong cohesive forces between the mol-
ecules. As a result, a liquid takes the shape of the container it is in, and it forms a 
free surface in a larger container in a gravitational field. A gas, on the other hand, 
expands until it encounters the walls of the container and fills the entire avail-
able space. This is because the gas molecules are widely spaced, and the cohesive 
forces between them are very small. Unlike liquids, a gas in an open container 
cannot form a free surface (Fig. 1–10).

Although solids and fluids are easily distinguished in most cases, this distinction 
is not so clear in some borderline cases. For example, asphalt appears and behaves 
as a solid since it resists shear stress for short periods of time. When these forces 
are exerted over extended periods of time, however, the asphalt deforms slowly, 
behaving as a fluid. Some plastics, lead, and slurry mixtures exhibit similar behav-
ior. Such borderline cases are beyond the scope of this text. The fluids we deal with 
in this text will be clearly recognizable as fluids.
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1–5 ■ �IMPORTANCE OF DIMENSIONS  
AND UNITS

Any physical quantity can be characterized by dimensions. The magni-
tudes assigned to the dimensions are called units. Some basic dimensions 
such as mass m, length L, time t, and temperature T are selected as primary 
or fundamental dimensions, while others such as velocity V, energy E, and 
volume V are expressed in terms of the primary dimensions and are called 
secondary dimensions, or derived dimensions.

A number of unit systems have been developed over the years. Despite 
strong efforts in the scientific and engineering community to unify the world 
with a single unit system, two sets of units are still in common use today: the 
English system, which is also known as the United States Customary System 
(USCS), and the metric SI (from Le Système International d’ Unités), which is 
also known as the International System. The SI is a simple and logical system 
based on a decimal relationship between the various units, and it is used for 
scientific and engineering work in most of the industrialized nations, including 
England. The English system, however, has no apparent systematic numerical 
base, and various units in this system are related to each other rather arbitrarily 
(12 in = 1 ft, 1 mile = 5280 ft, 4 qt = 1 gal, etc.), which makes it confusing and 
difficult to learn. The United States is the only industrialized country that has 
not yet fully converted to the metric system.

The systematic efforts to develop a universally acceptable system of units 
dates back to 1790 when the French National Assembly charged the French 
Academy of Sciences to come up with such a unit system. An early version of 
the metric system was soon developed in France, but it did not find universal 
acceptance until 1875 when The Metric Convention Treaty was prepared and 
signed by 17 nations, including the United States. In this international treaty, 
meter and gram were established as the metric units for length and mass, respec-
tively, and a General Conference of Weights and Measures (CGPM) was estab-
lished that was to meet every six years. In 1960, the CGPM produced the SI, 
which was based on six fundamental quantities, and their units were adopted in 
1954 at the Tenth General Conference of Weights and Measures: meter (m) for 
length, kilogram (kg) for mass, second (s) for time, ampere (A) for electric cur-
rent, degree Kelvin (°K) for temperature, and candela (cd) for luminous intensity 
(amount of light). In 1971, the CGPM added a seventh fundamental quantity 
and unit: mole (mol) for the amount of matter.

Accurate and universal definitions of fundamental units have been challenging 
for the scientific community for many years. Recent new definitions of kilogram, 
mole, ampere, and kelvin are considered to be a historical milestone. 

The kilogram unit represents the mass of one liter of pure water at 4°C. Previously, 
the kilogram was officially defined as the mass of a shiny metal cylinder that has 
been stored in Paris since 1889. This International Prototype of Kilogram is an 
alloy of 90 percent platinum and 10 percent iridium, also known as Le Grand K. 

On November 26, 2018, representatives from 60 countries gathered for the 
26th General Conference on Weights and Measures in Versailles, France, and 
adopted a resolution to define the unit of mass in terms of the Planck constant h,  
which has a fixed value of 6.62607015 × 10−34 m2 · kg/s. Note that the Planck 
constant has kg in it, and certain equations in physics relate the Planck constant 
to one kilogram. Using the above definition of h, 

​1 kg = ​  h __  
6.62607015 × 10−34 ​ ​ 

s _ 
m2 ​​

where the units of second (s) and meter (m) are themselves defined in terms 
of two other fundamental constants, c (speed of light in a vacuum) and ΔνCs 
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TABLE 1–1
The seven fundamental (or primary) 
dimensions and their units in SI

Dimension Unit

Length meter (m)
Mass kilogram (kg)
Time second (s)
Temperature kelvin (K)
Electric current ampere (A)
Amount of light candela (cd)
Amount of matter mole (mol)

TABLE 1–2
Standard prefixes in SI units

Multiple Prefix

1024 yotta, Y
1021 zetta, Z
1018 exa, E
1015 peta, P
1012 tera, T
109 giga, G
106 mega, M
103 kilo, k
102 hecto, h
101 deka, da
10−1 deci, d
10−2 centi, c
10−3 milli, m
10−6 micro, μ
10−9 nano, n
10−12 pico, p
10−15 femto, f
10−18 atto, a
10−21 zepto, z
10−24 yocto, y

FIGURE 1–11
The SI unit prefixes are used in all 
branches of engineering.

1 kg200 mL
(0.2 L) (103 g)

1 MΩ

(106 Ω)

(ground state hyperfine structure transition frequency of the cesium-133 atom). 
Thus, the standard kilogram is now formally defined as

​1 kg = ​  (299,792,458)2
   ____   

(6.62607015 × 10−34)(9,192,631,770)
 ​ ​ 
h · ΔνCs _ 

c2 ​​

At the same conference, the approach of using fixed universal constants was 
also adopted for the new definitions of the mole, the kelvin, and the ampere. 
The mole (sometimes mol) is related to the value of Avogadro’s constant and 
the ampere to the value of the elementary charge. The kelvin is related to the 
Boltzmann constant, whose value is fixed at 1.380649 × 10−23 J/K.

The standard meter unit was originally defined as 1/10,000,000 of the dis-
tance between the north pole and the equator. This distance was measured as 
accurately as possible at the time, and in the late 18th century a “master metre” 
stick of this length was made. All other meters were measured from this stick. 
Subsequent calculations of the pole–equator distance showed that the original 
measurement was inaccurate. In 1983, the meter was redefined as the distance 
traveled by light in a vacuum in 1/299,792,458 of a second.

Based on the notational scheme introduced in 1967, the degree symbol was 
officially dropped from the absolute temperature unit, and all unit names were 
to be written without capitalization even if they were derived from proper names 
(Table 1–1). However, the abbreviation of a unit was to be capitalized if the unit 
was derived from a proper name. For example, the SI unit of force, which is named 
after Sir Isaac Newton (1647–1723), is newton (not Newton), and it is abbreviated 
as N. Also, the full name of a unit may be pluralized, but its abbreviation cannot. 
For example, the length of an object can be 5 m or 5 meters, not 5 ms or 5 meter. 
Finally, no period is to be used in unit abbreviations unless they appear at the end 
of a sentence. For example, the proper abbreviation of meter is m (not m.).

The move toward the metric system in the United States seems to have started 
in 1968 when Congress, in response to what was happening in the rest of the 
world, passed a Metric Study Act. Congress continued to promote a voluntary 
switch to the metric system by passing the Metric Conversion Act in 1975. A 
trade bill passed by Congress in 1988 set a September 1992 deadline for all 
federal agencies to convert to the metric system. However, the deadlines were 
relaxed later with no clear plans for the future.

The industries that are heavily involved in international trade (such as the 
automotive, soft drink, and liquor industries) have been quick to convert to the 
metric system for economic reasons (having a single worldwide design, fewer 
sizes, smaller inventories, etc.). Today, nearly all the cars manufactured in the 
United States are metric. Most car owners probably do not realize this until they 
try an English socket wrench on a metric bolt. Most industries, however, resisted 
the change, thus slowing down the conversion process.

At present the United States is a dual-system society, and it will stay that way 
until the transition to the metric system is completed. This puts an extra burden 
on today’s engineering students, since they are expected to retain their under-
standing of the English system while learning, thinking, and working in terms 
of the SI. Given the position of the engineers in the transition period, both unit 
systems are used in this text, with particular emphasis on SI units.

As pointed out, the SI is based on a decimal relationship between units. The 
prefixes used to express the multiples of the various units are listed in Table 1–2. 
They are standard for all units, and the student is encouraged to memorize them 
because of their widespread use (Fig. 1–11).

Some SI and English Units
In SI, the units of mass, length, and time are the kilogram (kg), meter (m), 
and second (s), respectively. The respective units in the English system are the 
pound-mass (lbm), foot (ft), and second (s). The pound symbol lb is actually the 
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abbreviation of libra, which was the ancient Roman unit of weight. The English 
retained this symbol even after the end of the Roman occupation of Britain in 
410. The mass and length units in the two systems are related to each other by

​​
1 lbm

​ 
=

​ 
0.45356 kg

​  ​​  ​​  ​​ 
1 ft

​ 
=

​ 
0.3048 m

 ​​

In the English system, force is usually considered to be one of the primary 
dimensions and is assigned a nonderived unit. This is a source of confusion and 
error that necessitates the use of a dimensional constant (gc) in many formulas. 
To avoid this nuisance, we consider force to be a secondary dimension whose 
unit is derived from Newton’s second law, that is,

​Force = ​​(​​Mass​)​​​(​​Acceleration​)​​​​

or

	​ F = ma​� (1–1)

In SI, the force unit is the newton (N), and it is defined as the force required to 
accelerate a mass of 1 kg at a rate of 1 m/s2. In the English system, the force unit 
is the pound-force (lbf) and is defined as the force required to accelerate a mass 
of 1 slug (32.174 lbm) at a rate of 1 ft/s2 (Fig. 1–12). That is,

​1 N = 1 kg⋅m / ​s​​2​​

​1 lbf = 32.174 lbm⋅ft / ​s​​2​​

A force of 1 N is roughly equivalent to the weight of a small apple (m = 102 g), 
whereas a force of 1 lbf is roughly equivalent to the weight of four medium 
apples (mtotal = 454 g), as shown in Fig. 1–13. Another force unit in common 
use in many European countries is the kilogram-force (kgf), which is the weight 
of a 1 kg mass at sea level (1 kgf = 9.807 N).

The term weight is often incorrectly used to express mass, particularly by the 
“weight watchers.” Unlike mass, weight W is a force. It is the gravitational force 
applied to a body, and its magnitude is determined from Newton’s second law,

	​ W = mg   ​  (N)​​	 (1–2)

where m is the mass of the body, and g is the local gravitational acceleration 
(g is 9.807 m/s2 or 32.174 ft/s2 at sea level and 45° latitude). An ordinary bath-
room scale measures the gravitational force acting on a body.

The mass of a body remains the same regardless of its location in the universe. 
Its weight, however, changes with a change in gravitational acceleration. A body 
weighs less on top of a mountain since g decreases with altitude. On the surface 
of the moon, an astronaut weighs about one-sixth of what she or he normally 
weighs on earth (Fig. 1–14).

At sea level a mass of 1 kg weighs 9.807 N, as illustrated in Fig. 1–15. A 
mass of 1 lbm, however, weighs 1 lbf, which misleads people into believing that 
pound-mass and pound-force can be used interchangeably as pound (lb), which 
is a major source of error in the English system.

It should be noted that the gravity force acting on a mass is due to the attraction 
between the masses, and thus it is proportional to the magnitudes of the masses 
and inversely proportional to the square of the distance between them. Therefore, 
the gravitational acceleration g at a location depends on  latitude, the distance to 
the center of the earth, and to a lesser extent, the positions of the moon and the 
sun. The value of g varies with location from 9.832 m/s2 at the poles (9.789 at 
the equator) to 7.322 m/s2 at 1000 km above sea level. However, at altitudes up 

FIGURE 1–12
The definition of the force units.
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F = 1 lbf
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FIGURE 1–13
The relative magnitudes of the force 

units newton (N), kilogram-force 
(kgf), and pound-force (lbf).
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FIGURE 1–14
A body weighing 150 lbf on earth will 

weigh only 25 lbf on the moon.
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